Background: Air pollution from cooking with solid fuels is a potentially modifiable risk factor for increased blood pressure and may lead to eye irritation.
Objectives: To evaluate whether a climate motivated cookstove intervention reduced blood pressure and eye irritation symptoms in Indian women.
Methods: Households using traditional stoves were randomized to receive a rocket stove or continue using traditional stoves. Systolic (SBP) and diastolic blood pressure (DBP), and self-reported eye symptoms were measured twice, pre-intervention and at least 124 days post-intervention in women > 25 years old in control (N = 111) and intervention (N = 111) groups in rural Karnataka, India. Daily (24-h) fine particle (PM2.5) mass and absorbance (Abs) were measured in cooking areas at each visit. Mixed-effect models were used to estimate before-and-after differences in SBP, DBP and eye symptoms.
Results: We observed a lower SBP (-2.0 (-4.5, 0.5) mmHg) and DBP (-1.1 (-2.9, 0.6) mmHg) among exclusive users of intervention stove, although confidence intervals included zero. Stacking or mixed use of intervention and traditional stoves contributed to a small increase in SBP 2.6 (-0.4, 5.7) mmHg) and DBP (1.2 (-0.9, 3.3) mmHg). Exclusive and mixed stove users experienced higher post-intervention reductions, on average, in self-reported eye irritation symptoms for burning sensation in eyes, and eyes look red often compared to control. Median air pollutant concentrations increased post-intervention in all stove groups, with the lowest median PM2.5 increase in the exclusive intervention stove group.
Conclusions: Health benefits were limited due to stacking and lower-than-predicted efficiency of the intervention stove in the field. Stove adoption and use behavior, in addition to stove technology, affects achievement of health co-benefits. Carbon-financing schemes need to align with international guidelines that have been set based on health outcomes to maximize health co-benefits from cookstove interventions.
Keywords: Biomass fuel; Black carbon; Cardiovascular health; Climate financed; Particulate matter.
Copyright © 2018 Elsevier Inc. All rights reserved.