Context: Adolescents with type 1 diabetes (T1D) have difficulty obtaining optimal glucose control, which may relate to insulin resistance (IR), especially during puberty. Moreover, IR increases the risk for cardiovascular disease, the leading cause of death in T1D. However, the tissue specificity of IR in adolescents with T1D has not been fully phenotyped.
Objective: To assess adipose, hepatic, and peripheral insulin sensitivity in adolescents with and without T1D.
Design and setting: Thirty-five youth with T1D [median age, 16 (first and third quartiles, 14, 17) years; 53% female; median body mass index (BMI) percentile, 82nd (55th, 96th); late puberty; median hemoglobin A1c, 8.3% (7.3%, 9.4%)] and 22 nondiabetic youth of similar age, BMI, pubertal stage, and level of habitual physical activity were enrolled. Insulin action was measured with a four-phase hyperinsulinemic euglycemic clamp (basal and 10, 16, and 80 mU/m2/min) with glucose and glycerol isotope tracers.
Results: Adolescents with T1D had a significantly higher rate of lipolysis (P < 0.0001) and endogenous glucose production (P < 0.001) and lower peripheral glucose uptake (glucose rate of disappearance, 6.9 ± 2.9 mg/kg/min for patients with T1D vs 11.3 ± 3.3 for controls; P < 0.0001) during hyperinsulinemia compared with controls. In youth with T1D, glucose rate of disappearance correlated with free fatty acid at the 80-mU/m2/min phase (P = 0.005), markers of inflammation (IL-6; P = 0.012), high-sensitivity C-reactive protein (P = 0.001), and leptin (P = 0.008)], but not hemoglobin A1c.
Conclusions: Adolescents with T1D have adipose, hepatic and peripheral IR. This IR occurs regardless of obesity and metabolic syndrome features. Youth with T1D may benefit from interventions directed at improving IR in these tissues, and this area requires further research.