Plant development and morphology relies on the accurate insertion of new cell walls during cytokinesis. However, how a plant cell correctly orients a new wall is poorly understood. Two kinesin class-12 members, phragmoplast orienting kinesin 1 (POK1) and POK2, are involved in the process, but how these molecular machines work is not known. Here, we used in vivo and single-molecule in vitro measurements to determine how Arabidopsis thaliana POK2 motors function mechanically. We found that POK2 is a very weak, on average plus-end-directed, moderately fast kinesin. Interestingly, POK2 switches between processive and diffusive modes characterized by an exclusive-state mean-squared-displacement analysis. Our results support a model that POK motors push against peripheral microtubules of the phragmoplast for its guidance. This pushing model may mechanically explain the conspicuous narrowing of the division site. Together, our findings provide mechanical insight into how active motors accurately position new cell walls in plants.
Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.