When aiming at assessing motor control development, natural walking (NW), and tandem walking (TW) are two locomotor tasks that allow analyzing different characteristics of motor control performance. NW is the reference locomotor task, expected to become more and more automatic with age. TW is a nonparadigmatic task used in clinics to highlight eventual impairments and to evaluate how a child deals with a new challenging motor experience. This work aims at investigating motor development in school-aged children, by assessing quantitatively their performance during TW and NW. Eighty children (6-10 years) participated in the study. Trunk acceleration data and nonlinear measures (recurrence quantification analysis (RQA), and multiscale entropy (MSE)) were used to characterize trunk postural control and motor complexity. The results were analyzed with respect to age and standard clinical assessment of TW (number of correct consecutive steps), by means of Spearman correlation coefficients. RQA and MSE allowed highlighting age-related changes in both postural control of the trunk and motor complexity, while classic standard assessment of TW resulted uniformly distributed in the different age groups. The present results suggest this quantitative approach as relevant when assessing the motor development in schoolchildren and complementary to standard clinical tests.
Keywords: Bioinstrumentation; Biomechanics; Measurements.
Copyright © 2018 by ASME.