Watermarking Based on Compressive Sensing for Digital Speech Detection and Recovery

Sensors (Basel). 2018 Jul 23;18(7):2390. doi: 10.3390/s18072390.

Abstract

In this paper, a novel imperceptible, fragile and blind watermark scheme is proposed for speech tampering detection and self-recovery. The embedded watermark data for content recovery is calculated from the original discrete cosine transform (DCT) coefficients of host speech. The watermark information is shared in a frames-group instead of stored in one frame. The scheme trades off between the data waste problem and the tampering coincidence problem. When a part of a watermarked speech signal is tampered with, one can accurately localize the tampered area, the watermark data in the area without any modification still can be extracted. Then, a compressive sensing technique is employed to retrieve the coefficients by exploiting the sparseness in the DCT domain. The smaller the tampered the area, the better quality of the recovered signal is. Experimental results show that the watermarked signal is imperceptible, and the recovered signal is intelligible for high tampering rates of up to 47.6%. A deep learning-based enhancement method is also proposed and implemented to increase the SNR of recovered speech signal.

Keywords: compressive sensing; digital watermarking; discrete cosine transform; self-recovery; speech detection.