Multilayered, Bipolar, All-Solid-State Battery Enabled by a Perovskite-Based Biphasic Solid Electrolyte

ChemSusChem. 2018 Sep 21;11(18):3184-3190. doi: 10.1002/cssc.201801399. Epub 2018 Aug 13.

Abstract

The use of solid electrolytes provides a technical solution to address the safety issues of lithium-ion batteries and enables a bipolar design of high-voltage and high-energy battery modules. The bipolar design avoids unnecessary components and parts for packaging and electrical connection; therefore, it facilitates an increase in the volumetric energy density of the battery, while enabling easy build-up of total output voltage. Herein, the design and construction of a multilayered, bipolar-type, all-solid-state battery (ASSB) from a biphasic solid electrolyte (BSE) based on inorganic Li0.29 La0.57 TiO3 perovskite and poly(ethylene oxide) (PEO) are reported. A flexible and freestanding BSE membrane exhibits high Li+ conductivity of about 1.2×10-4 S cm-1 , and shows enhanced electrochemical/thermal stability, in comparison to a PEO-only solid electrolyte. A single-layered ASSB assembled with a BSE shows promising electrochemical performance, as evidenced by a high reversible capacity of about 123 mA h g-1 and excellent cycling stability over 100 cycles. Furthermore, a proof-of-concept bipolar ASSB comprising three unit cells connected in series is constructed by using the BSE membrane and Al/Cu-cladded bipolar plates. The bipolar ASSB shows high thermal stability and operates reversibly without any internal short circuit or current leakage during charge-discharge cycles; this demonstrates that BSEs provide a promising approach to the design and fabrication of bipolar ASSBs with improved safety and high energy density.

Keywords: electrochemistry; organic-inorganic hybrid composites; perovskite phases; polymers; solid-state structures.