The involvement of calpain in the activation of protein kinase C in neutrophils stimulated by phorbol myristic acid

J Biol Chem. 1986 Mar 25;261(9):4101-5.

Abstract

The Ca2+/phospholipid-dependent protein kinase (protein kinase C) of human neutrophils is converted to a proteolytically modified Ca2+/phospholipid-independent form (Inoue, M., Kishimoto, A., Takai, Y.U., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616) on incubation with neutrophil membranes in the presence of micromolar concentrations of Ca2+ and an endogenous Ca2+-requiring proteinase (Melloni, E., Pontremoli, S., Michetti, M., Sacco, O., Sparatore, B., Salamino, F., and Horecker, B. L. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6435-6439). We have now demonstrated the appearance of a similar Ca2+/phospholipid-independent kinase in intact human neutrophils stimulated by phorbol 12-myristate 13-acetate (PMA). The following evidence supports the conclusion that the Ca2+/phospholipid-independent protein kinase recovered from the PMA-treated cells is a proteolytically modified form of the "native" protein kinase C. 1) In cells exposed to PMA, the rate of disappearance of Ca2+/phospholipid-dependent protein kinase C activity is correlated with the rate of appearance of the Ca2+/phospholipid-independent kinase. 2) The chromatographic behavior of the new protein kinase and its molecular size (approximately 65 kDa) are identical to those previously reported for the proteolytically modified form of protein kinase C. 3) The modified protein kinase no longer binds to the cell membrane and is recovered almost entirely in the cytosol fraction. 4) In neutrophils preloaded with inhibitors of the Ca2+-requiring proteinase, stimulation with PMA results in translocation of protein kinase C from the cytosol fraction to the particulate fraction, but the appearance of the soluble, Ca2+/phospholipid-dependent form is prevented. We conclude that binding of protein kinase C to the plasma membrane and its proteolytic conversion are related, but independent, processes both elicited by exposure of neutrophils to the phorbol ester. Proteolytic cleavage of the membrane-bound protein kinase C provides an alternative mechanism for its activation and may account for certain of the cellular responses observed in PMA-stimulated neutrophils.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calpain / metabolism*
  • Chromatography, DEAE-Cellulose
  • Chromatography, Gel
  • Enzyme Activation
  • Humans
  • Neutrophils / drug effects*
  • Neutrophils / enzymology
  • Phorbols / pharmacology*
  • Protein Kinase C / blood*
  • Tetradecanoylphorbol Acetate / pharmacology*

Substances

  • Phorbols
  • Protein Kinase C
  • Calpain
  • Tetradecanoylphorbol Acetate