Engineered global regulator H-NS improves the acid tolerance of E. coli

Microb Cell Fact. 2018 Jul 27;17(1):118. doi: 10.1186/s12934-018-0966-z.

Abstract

Background: Acid stress is often encountered during industrial fermentation as a result of the accumulation of acidic metabolites. Acid stress increases the intracellular acidity and can cause DNA damage and denaturation of essential enzymes, thus leading to a decrease of growth and fermentation yields. Although acid stress can be relieved by addition of a base to the medium, fermentations with acid-tolerant strains are generally considered much more efficient and cost-effective.

Results: In this study, the global regulator H-NS was found to have significant influence on the acid tolerance of E. coli. The final OD600 of strains overexpressing H-NS increased by 24% compared to control, when cultured for 24 h at pH 4.5 using HCl as an acid agent. To further improve the acid tolerance, a library of H-NS was constructed by error-prone PCR and subjected to selection. Five mutants that conferred a significant growth advantage compared to the control strain were obtained. The final OD600 of strains harboring the five H-NS mutants was enhanced by 26-53%, and their survival rate was increased by 10- to 100-fold at pH 2.5. Further investigation showed that the improved acid tolerance of H-NS mutants coincides with the activation of multiple acid resistance mechanisms, in particular the glutamate- and glutamine-dependent acid resistance system (AR2). The improved acid tolerance of H-NS mutants was also demonstrated in media acidified by acetic acid and succinic acid, which are common acidic fermentation by-products or products.

Conclusions: The results obtained in this work demonstrate that the engineering of H-NS can enhance the acid tolerance of E. coli. More in general, this study shows the potential of the engineering of global regulators acting as repressors, such as H-NS, as a promising method to obtain phenotypes of interest. This approach could expand the spectrum of application of global transcription machinery engineering.

Keywords: Acid tolerance; E. coli; Error-prone PCR; Global transcription machinery engineering (gTME); H-NS.

MeSH terms

  • Acetic Acid / pharmacology*
  • Escherichia coli / drug effects*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Fermentation / drug effects
  • Polymerase Chain Reaction
  • Succinic Acid / pharmacology*

Substances

  • Escherichia coli Proteins
  • Succinic Acid
  • Acetic Acid