Background: Precision medicine guided by comprehensive genome sequencing represents a potential treatment strategy for pancreatic cancer. However, clinical sequencing for pancreatic cancer entails several practical difficulties. We have launched an in-house clinical sequencing system and started genomic testing for patients with cancer in clinical practice. We have analyzed the clinical utility of this system in pancreatic cancer.
Methods: We retrospectively reviewed 20 patients with pancreatic cancer who visited our division. Genomic DNA was extracted from both tumor tissue and peripheral blood mononuclear cells obtained from the patients. We performed a comprehensive genomic testing using targeted amplicon sequencing for 160 cancer-related genes. The primary endpoints were the detection rates of potential actionable and druggable gene alterations. The secondary endpoints were the detection rate of secondary germline findings, the rate of re-biopsy required for genome sequencing, survival time after the initial visit (post-sequencing survival time), and turnaround time.
Results: Although re-biopsy was required for 25% (5/20) of all patients, genomic testing was performed in all patients. Actionable and druggable gene alterations were detected in 100% (20/20) and 35% (7/20) of patients, respectively, whereas secondary germline findings were detected in 5% (1/20) of patients. The median turnaround times for physicians and patients were 20 and 26 days, respectively. The median post-sequencing survival time was 10.3 months. Only 10% (2/20) of all patients were treated with therapeutic agents based on the outcomes of genomic testing.
Conclusions: The clinical application of comprehensive genomic testing for pancreatic cancer was feasible and promising in clinical practice.
Keywords: Clinical sequencing; Gene alterations; Precision medicine; Turnaround time.
Copyright © 2018 IAP and EPC. Published by Elsevier B.V. All rights reserved.