Population Pharmacokinetics of Artemether, Dihydroartemisinin, and Lumefantrine in Rwandese Pregnant Women Treated for Uncomplicated Plasmodium falciparum Malaria

Antimicrob Agents Chemother. 2018 Sep 24;62(10):e00518-18. doi: 10.1128/AAC.00518-18. Print 2018 Oct.

Abstract

The artemisinin-based combination therapy artemether-lumefantrine is commonly used in pregnant malaria patients. However, the effect of pregnancy-related changes on exposure is unclear, and pregnancy has been associated with decreased efficacy in previous studies. This study aimed to characterize the population pharmacokinetics of artemether, its active metabolite dihydroartemisinin, and lumefantrine in 22 Rwandese pregnant women in their second (n = 11) or third (n = 11) trimester with uncomplicated Plasmodium falciparum malaria. These patients were enrolled from Rwamagana district hospital and received the standard fixed oral dose combination of 80 mg of artemether and 480 mg of lumefantrine twice daily for 3 days. Venous plasma concentrations were quantified for all three analytes using liquid chromatography coupled with tandem mass spectroscopy, and data were analyzed using nonlinear mixed-effects modeling. Lumefantrine pharmacokinetics was described by a flexible but highly variable absorption, with a mean absorption time of 4.04 h, followed by a biphasic disposition model. The median area under the concentration-time curve from 0 h to infinity (AUC0-∞) for lumefantrine was 641 h · mg/liter. Model-based simulations indicated that 11.7% of the study population did not attain the target day 7 plasma concentration (280 ng/ml), a threshold associated with increased risk of recrudescence. The pharmacokinetics of artemether was time dependent, and the autoinduction of its clearance was described using an enzyme turnover model. The turnover half-life was predicted to be 30.4 h. The typical oral clearance, which started at 467 liters/h, increased 1.43-fold at the end of treatment. Simulations suggested that lumefantrine pharmacokinetic target attainment appeared to be reassuring in Rwandese pregnant women, particularly compared to target attainment in Southeast Asia. Larger cohorts will be required to confirm this finding.

Keywords: artemether; dihydroartemisinin; lumefantrine; malaria; pharmacokinetics; pharmacometrics; pregnancy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Antimalarials / pharmacokinetics*
  • Antimalarials / therapeutic use
  • Artemether / pharmacokinetics*
  • Artemether / therapeutic use
  • Artemisinins / pharmacokinetics*
  • Artemisinins / therapeutic use
  • Female
  • Humans
  • Lumefantrine / pharmacokinetics*
  • Lumefantrine / therapeutic use
  • Malaria, Falciparum / drug therapy*
  • Malaria, Falciparum / metabolism
  • Pregnancy
  • Tandem Mass Spectrometry
  • Young Adult

Substances

  • Antimalarials
  • Artemisinins
  • artenimol
  • Artemether
  • Lumefantrine