Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro

Int J Oncol. 2018 Oct;53(4):1703-1712. doi: 10.3892/ijo.2018.4501. Epub 2018 Jul 25.

Abstract

Glucose-6-phosphate dehydrogenase (G6PD) is a rate-limiting enzyme of the pentose phosphate pathway. Multiple studies have previously revealed that elevated G6PD levels promote cancer progression in numerous tumor types; however, the underlying mechanism remains unclear. In the present study, it was demonstrated that high G6PD expression is a poor prognostic factor in bladder cancer, and the levels of G6PD expression increase with increasing tumor stage. Patients with bladder cancer with high G6PD expression had worse survival rates compared with those with lower G6PD expression in resected tumors. In vitro experiments revealed that knockdown of G6PD suppressed cell viability and growth in Cell Counting Kit-8 and colony formation assays, and increased apoptosis in bladder cancer cell lines compared with normal cells. Further experiments indicated that the weakening of the survival ability in G6PD-knockdown bladder cancer cells may be explained by intracellular reactive oxygen species accumulation and protein kinase B pathway suppression. Furthermore, it was additionally revealed that 6-aminonicotinamide (6-AN), a competitive G6PD inhibitor, may be a potential therapy for bladder cancer, particularly in cases with high G6PD expression, and that the combination of cisplatin and 6-AN may optimize the clinical dose or minimize the side effects of cisplatin.

MeSH terms

  • 6-Aminonicotinamide / pharmacology
  • 6-Aminonicotinamide / therapeutic use
  • Aged
  • Antineoplastic Combined Chemotherapy Protocols / pharmacology
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use*
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Cisplatin / pharmacology
  • Cisplatin / therapeutic use
  • Female
  • Gene Knockdown Techniques
  • Glucosephosphate Dehydrogenase / antagonists & inhibitors
  • Glucosephosphate Dehydrogenase / genetics
  • Glucosephosphate Dehydrogenase / metabolism*
  • HEK293 Cells
  • Humans
  • Male
  • Middle Aged
  • Neoplasm Staging
  • Prognosis
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA, Small Interfering / metabolism
  • Reactive Oxygen Species / metabolism*
  • Signal Transduction / drug effects
  • Survival Rate
  • Urinary Bladder / pathology
  • Urinary Bladder / surgery
  • Urinary Bladder Neoplasms / mortality
  • Urinary Bladder Neoplasms / pathology*
  • Urinary Bladder Neoplasms / therapy

Substances

  • RNA, Small Interfering
  • Reactive Oxygen Species
  • 6-Aminonicotinamide
  • G6PD protein, human
  • Glucosephosphate Dehydrogenase
  • Proto-Oncogene Proteins c-akt
  • Cisplatin