Background: The efficacy of a neuromuscular training (NMT) program to ameliorate known hip biomechanical risk factors for athletes with anterior cruciate ligament reconstruction (ACLR) is currently unknown. Purpose/Hypothesis: The purpose was to quantify the effects of an NMT program on hip biomechanics among athletes with ACLR and to compare posttraining hip biomechanics with a control group. The hypotheses were that known hip biomechanical risk factors of anterior cruciate ligament (ACL) injury would be significantly reduced among athletes with ACLR after the NMT program and that posttraining hip biomechanics between the ACLR and control cohorts would not differ.
Study design: Controlled laboratory study.
Methods: Twenty-eight athletes (n = 18, ACLR; n = 10, uninjured) completed a 12-session NMT program. Biomechanical evaluation of a jump-landing task was done before and after completion of the program. Repeated measures analysis of variance was performed to understand the effect of NMT within the ACLR cohort. Two-way analysis of variance was used to compare both groups. Post hoc testing was done for significant interactions. Hip biomechanical variables at initial contact are reported.
Results: The athletes with ACLR who completed the NMT program had a significant session × limb interaction ( P = .01) for hip external rotation moment and a significant main effect of session for hip flexion angle ( P = .049) and moment ( P < .001). There was a significant change for the involved ( P = .04; 528% increase) and uninvolved ( P = .04; 57% decrease) limbs from pre- to posttraining for hip rotation moment. The ACLR cohort had an increase in hip flexion angle (14% change) and a decrease in hip flexion moment (65% change) from pre- to posttraining. Posttraining comparison for these same hip biomechanical variables of interest revealed no significant interactions ( P > .05) between the ACLR and control cohorts. There was a significant main effect of group ( P = .02) for hip flexion angle, as the ACLR cohort demonstrated greater hip flexion angle than that of the control group.
Conclusion: For athletes with ACLR, hip biomechanical measures of ACL injury risk show significant improvements after completion of an NMT program.
Clinical relevance: Athletes with ACLR who are participating in an NMT program may ameliorate known hip biomechanical risk factors for an ACL injury.
Keywords: ACL reconstruction; anterior cruciate ligament; neuromuscular training.