Linear carbon chains (LCCs) have been shown to grow inside double-walled carbon nanotubes (DWCNTs), but isolating them from this hosting material represents one of the most challenging tasks toward applications. Herein we report the extraction and separation of LCCs inside single-walled carbon nanotubes (LCCs@SWCNTs) extracted from a double-walled host LCCs@DWCNTs by applying a combined tip-ultrasonic and density gradient ultracentrifugation (DGU) process. High-resolution transmission electron microscopy, optical absorption, and Raman spectroscopy show that not only short LCCs but clearly long LCCs (LLCCs) can be extracted and separated from the host. Moreover, the LLCCs can even be condensed by DGU. The Raman spectral frequency of LCCs remains almost unchanged regardless of the presence of the outer tube of the DWCNTs. This suggests that the major importance of the outer tubes is making the whole synthesis viable. We have also been able to observe the interaction between the LCCs and the inner tubes of DWCNTs, playing a major role in modifying the optical properties of LCCs. Our extraction method suggests the possibility toward the complete isolation of LCCs from CNTs.
Keywords: Raman spectroscopy; absorption spectroscopy; double-walled carbon nanotubes; extraction; linear carbon chains; separation; single-walled carbon nanotubes.