Construction sites as an important driver of dengue transmission: implications for disease control

BMC Infect Dis. 2018 Aug 8;18(1):382. doi: 10.1186/s12879-018-3311-6.

Abstract

Background: In 2013 and 2014, Singapore experienced its worst dengue outbreak known-to-date. Mosquito breeding in construction sites stood out as a probable risk factor due to its association with major dengue clusters in both years. We, therefore, investigated the contribution of construction sites to dengue transmission in Singapore, highlighting three case studies of large construction site-associated dengue clusters recorded during 2013-16.

Methods: The study included two components; a statistical analysis of cluster records from 2013 to 2016, and case studies of three biggest construction site-associated clusters. We explored the odds of construction site-associated clusters growing into major clusters and determined whether clusters seeded in construction sites demonstrated a higher tendency to expand into major clusters. DENV strains obtained from dengue patients residing in three major clusters were genotyped to determine whether the same strains expanded into the surroundings of construction sites.

Results: Despite less than 5% of total recorded clusters being construction site-associated, the odds of such clusters expanding into major clusters were 17.4 (2013), 9.2 (2014), 3.3 (2015) and 4.3 (2016) times higher than non-construction site clusters. Aedes premise index and average larvae count per habitat were also higher in construction sites than residential premises during the study period. The majority of cases in clusters associated with construction sites were residents living in the surroundings. Virus genotype data from three case study sites revealed a transmission link between the construction sites and the surrounding residential areas.

Conclusions: Significantly high case burden and the probability of cluster expansion due to virus spill-over into surrounding areas suggested that construction sites play an important role as a driver of sustained dengue transmission. Our results emphasise that the management of construction-site associated dengue clusters should not be limited to the implicated construction sites, but be extended to the surrounding premises to prevent further transmission.

Keywords: Construction sites; Control; Dengue; Environmental driver; Genotyping; Surveillance.

MeSH terms

  • Aedes / virology*
  • Animals
  • Construction Industry*
  • Construction Materials / virology*
  • Dengue / transmission*
  • Dengue Virus*
  • Humans
  • Singapore