Background: A disintegrin and metalloproteinase (ADAM) 17, also known as tumour necrosis factor α-converting enzyme (TACE), is a metalloproteinase that releases the ectodomains of most growth factors, cytokines, receptors and enzymes and has been associated with the presence of chronic kidney disease (CKD) and cardiovascular (CV) disease. The role of circulating ADAMs in the progression of renal function and CV events in CKD patients is unknown.
Methods: A total of 2570 subjects from an observational and multicentre study with CKD Stages 3-5, CKD Stage 5D and controls without any history of CV disease were studied. Circulating ADAM activity was assessed using a fluorometric technique. Progression of renal disease was defined as a 30% increase in serum creatinine or dialysis requirement after 24 months of follow-up. CV outcomes were assessed after 48 months of follow-up.
Results: Patients with advanced CKD had higher ADAM activity as compared with patients with moderate CKD or controls. Male patients with progression of CKD had higher ADAM levels at baseline compared with patients with stable renal function {22.19 relative fluorescence units/μL/h [95% confidence interval (CI) 11.22-37.32] versus 12.15 (7.02-21.50)}. After multivariate adjustment, higher ADAM activity was identified as a risk factor for progression of CKD in male patients [30% increase in the creatinine odds ratio (OR) 2.72 (95% CI 1.58-4.68), P < 0.001; dialysis requirement OR 3.00 (95% CI 1.65-5.46), P < 0.001; dialysis requirement or 30% increase in the creatinine OR 3.15 (95% CI 2.06-4.81), P < 0.001]. ADAM activity was also identified as an independent risk factor for CV events [hazard ratio (HR) 1.68 (95% CI 1.20-2.36), P = 0.003].
Conclusions: High ADAMs activity levels are independently associated with CKD progression in males and with CV events in CKD patients.
Keywords: a desintegrin and metalloprotease domain 17; cardiovascular disease; chronic kidney disease; gender difference; renal progression.
© The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.