Generation of renewable mouse intestinal epithelial cell monolayers and organoids for functional analyses

BMC Cell Biol. 2018 Aug 15;19(1):15. doi: 10.1186/s12860-018-0165-0.

Abstract

Background: Conditional reprogramming has enabled the development of long-lived, normal epithelial cell lines from mice and humans by in vitro culture with ROCK inhibitor on a feeder layer. We applied this technology to mouse small intestine to create 2D mouse intestinal epithelial monolayers (IEC monolayers) from genetic mouse models for functional analysis.

Results: IEC monolayers form epithelial colonies that proliferate on a feeder cell layer and are able to maintain their genotype over long-term passage. IEC monolayers form 3D spheroids in matrigel culture and monolayers on transwell inserts making them useful for functional analyses. IEC monolayers derived from the Cystic Fibrosis (CF) mouse model CFTR ∆F508 fail to respond to CFTR activator forskolin in 3D matrigel culture as measured by spheroid swelling and transwell monolayer culture via Ussing chamber electrophysiology. Tumor IEC monolayers generated from the ApcMin/+ mouse intestinal cancer model grow more quickly than wild-type (WT) IEC monolayers both on feeders and as spheroids in matrigel culture.

Conclusions: These results indicate that generation of IEC monolayers is a useful model system for growing large numbers of genotype-specific mouse intestinal epithelial cells that may be used in functional studies to examine molecular mechanisms of disease and to identify and assess novel therapeutic compounds.

Keywords: Intestinal epithelial cells; Monolayer; Murine.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells
  • Adenomatous Polyposis Coli / metabolism
  • Adenomatous Polyposis Coli / pathology
  • Alleles
  • Animals
  • Cell Proliferation
  • Cell Self Renewal
  • Cell Shape
  • Cells, Cultured
  • Cellular Reprogramming
  • Cystic Fibrosis / metabolism
  • Cystic Fibrosis / pathology
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism
  • Epithelial Cells / cytology*
  • Epithelial Cells / metabolism
  • Intestinal Mucosa / cytology
  • Intestines / cytology*
  • Mice
  • Mice, Inbred C57BL
  • Mutation / genetics
  • Organoids / cytology*

Substances

  • cystic fibrosis transmembrane conductance regulator delta F508
  • Cystic Fibrosis Transmembrane Conductance Regulator