Background and objectives: Intravenous imiglucerase enzyme replacement therapy for Gaucher disease type 1 administered every 2 weeks is at variance with the imiglucerase plasma half-life of a few minutes. We hypothesized that studying the pharmacokinetics of imiglucerase in blood Gaucher disease type 1 monocytes would be more relevant for understanding enzyme replacement therapy responses.
Methods: Glucocerebrosidase intra-monocyte activity was studied by flow cytometry. The pharmacokinetics of imiglucerase was analyzed using a population-pharmacokinetic model from a cohort of 31 patients with Gaucher disease type 1 who either started or were receiving long-term treatment with imiglucerase.
Results: A pharmacokinetic analysis of imiglucerase showed a two-compartment model with a high peak followed by a two-phase exponential decay (fast phase half-life: 0.36 days; slow phase half-life: 9.7 days) leading to a median 1.4-fold increase in glucocerebrosidase intra-monocyte activity from the pre-treatment activity (p = 0.04). In patients receiving long-term treatment, for whom the imiglucerase dose per infusion was chosen on the basis of disease aggressiveness/response, imiglucerase clearance correlated with the administered dose. However, the residual glucocerebrosidase intra-monocyte activity value was dose independent, suggesting that the maintenance of imiglucerase residual activity is patient specific. Endogenous pre-treatment glucocerebrosidase intra-monocyte activity was the most informative single parameter for distinguishing patients without (n = 10) and with a clinical indication (n = 17) for starting enzyme replacement therapy (area under the receiver operating characteristic curve: 0.912; 95% confidence interval 0.8-1; p < 0.001), as confirmed also by a factorial analysis of mixed data.
Conclusion: This study provides novel pharmacokinetic data that support current imiglucerase administration regimens and suggests the existence of a glucocerebrosidase activity threshold related to Gaucher disease type 1 aggressiveness. These findings can potentially improve Gaucher disease type 1 management algorithms and clinical decision making.