Aging is characterized by substantial average decline in memory performance. Yet contradictory explanations have been given for how the brains of high-performing older adults work: either by engagement of compensatory processes such as recruitment of additional networks or by maintaining young adults' patterns of activity. Distinguishing these components requires large experimental samples and longitudinal follow-up. Here, we investigate which features are key to high memory in aging, directly testing these hypotheses by studying a large sample of adult participants (n > 300) with fMRI during an episodic memory experiment where item-context relationships were implicitly encoded. The analyses revealed that low levels of activity in frontal networks-known to be involved in memory encoding-were associated with low memory performance in the older adults only. Importantly, older participants with low memory performance and low frontal activity exhibited a strong longitudinal memory decline in an independent verbal episodic memory task spanning 8 years back (n = 52). These participants were also characterized by lower hippocampal volumes and steeper rates of cortical atrophy. Altogether, maintenance of frontal brain function during encoding seems to be a primary characteristic of preservation of memory function in aging, likely reflecting intact ability to integrate information.
Keywords: aging; brain maintenance; encoding; episodic memory; fMRI.
© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].