Background: Whole spine localizers (WS-loc) of magnetic resonance imaging (MRI) are performed for enumeration of the vertebrae but they can be also used for the evaluation of the spine.
Purpose: To assess the accuracy of fracture detection using WS-locs of MRI and compare the findings with standard high-resolution short tau inversion recovery (STIR) sequences, and to determine whether the review of WS-locs is useful and if additional information can be gained by assessing the thoracic spine section of the WS-locs.
Material and methods: A total of 298 magnetic resonance (MR) examinations of the lumbar spine with WS-locs were evaluated. Two independent readers reviewed the images. In case of fracture detection, further characterization of the fracture was performed. To assess inter-reader agreement, unweighted Cohen's kappa with 95% confidence intervals (CI) and Phi coefficients were calculated.
Results: The study sample included 187 female and 111 male patients (age range = 65-94 years; median age = 75.0 years). The WS-locs detected 42 fractures of the lumbar spine and 36 of the thoracic spine. Inter-reader agreement for fracture detection in the lumbar and thoracic spine was strong (K = 0.87, 95% CI = 0.78-0.95, Phi = 0.87, and K = 0.88, 95% CI = 0.79-0.96, Phi = 0.88, respectively).
Conclusion: WS-locs from MR examinations of the lumbar spine provide a good diagnostic tool for the detection and evaluation of unsuspected vertebral fractures. WS-locs show strong inter-reader agreement for fracture detection in the thoracic and lumbar spine.
Keywords: MRI; Spinal fracture; aged; magnetic resonance imaging; osteoporotic fractures/diagnosis.