Multivalent Crown Ether Receptors Enable Allosteric Regulation of Anion Exchange in an Fe4 L6 Tetrahedron

Angew Chem Int Ed Engl. 2018 Oct 22;57(43):14121-14124. doi: 10.1002/anie.201808534. Epub 2018 Sep 27.

Abstract

We report a strategy for regulating the rate of internally bound anion exchange within an Fe4 L6 metal-organic tetrahedron through external coordination of tripodal tris(alkylammonium) cations. The cage features three flexible 18-crown-6 receptors at each of its FeII vertices, facilitating strong tritopic interactions with tris(ammonium) cations to "cap" the vertices of the tetrahedron. This capping mechanism restricts the flexibility of the cage framework, thereby reducing the rate of anion exchange within its central cavity by 20-fold. Thus, we demonstrate the first use of an externally bound multivalent effector to allosterically control internal guest binding in a molecular cage.

Keywords: allostery; cage compounds; host-guest systems; multivalency; self-assembly.