Introduction: Abnormalities in the levels and functions of proteins that maintain hemostasis can cause thrombosis. Factor IX (FIX) R338L, i.e., Factor IX Padua, is a hyperactive clotting factor that promotes thrombosis. The R338L mutation increases the clotting rate by 8-fold despite increasing the Factor IXa enzymatic activity by only 2-fold. Protein S (PS) is a natural anticoagulant that directly inhibits FIXa. Because individuals affected by the R338L mutation have normal concentrations of PS, we speculated that the Padua hypercoagulation phenotype is due to decreased inhibition of FIXa R338L by PS.
Methods: We measured the ability of PS to inhibit FIX R338L, and we assessed the ability of PS to mitigate the prothrombotic effect FIX R338L.
Results: Plasma clotting assays demonstrated that 3-fold more PS was required to inhibit FIXa R338L compared with inhibition of wild type FIXa. Thrombin generation assays with Padua patient plasma recapitulated this biochemical consequence of the R338L mutation. Importantly, the less efficient inhibition of FIXa R338L was reversed by increasing PS concentration. Binding and co-immunoprecipitation studies revealed that the decrease in the inhibition of FIXa R338L by PS was caused by a 3- to 4-fold reduction in FIXa R338L affinity for PS.
Conclusion: In summary, the resistance of FIXa R338L to inhibition by PS likely contributes to the unexpectedly high clotting rate in Padua individuals. Moreover, PS-mediated reversal of the pathological properties of FIXa R338L suggests that PS administration may be a novel and effective means to mitigate thrombophilia caused by any source of elevated FIXa activity.
Keywords: Factor IXa; Factor Xa; Padua factor IXa; Protein S; TGA; Thrombophilia.
Published by Elsevier Ltd.