Essentials Mouse models are often used to define roles of tissue factor pathway inhibitor (TFPI) in man. TFPI isoform-specific KOs reveal unexpected differences between mouse and human TFPI physiology. Mouse plasma contains 20 times more TFPI than man, derived from TFPIγ, a form not found in man. TFPIγ null mice, expressing only TFPI isoforms α and β, may better reflect the human situation. SUMMARY: Background Mouse models can provide insight into the pathophysiology of human thrombosis and hemostasis. Tissue factor pathway inhibitor (TFPI) regulates coagulation through protein S (PS)-enhanced factor (F) Xa inhibition and FXa-dependent inhibition of FVIIa/tissue factor (TF) activity. TFPI is expressed as isoforms α and β in man, and α, β and γ in the mouse. Objective Assess the reliability of extending TFPI-related studies in mice to humans. Method Compare mouse and human TFPI physiology using a variety of methods. Results Mouse TFPI and human TFPI are similar in regard to: (i) the mechanisms for FVIIa/TF and FXa inhibition; (ii) TFPIα is a soluble form and TFPIβ is glycosyl phosphatidyl inositol (GPI) membrane anchored; (iii) the predominant circulating form of TFPI in plasma is lipoprotein-associated; (iv) low levels of TFPIα circulate in plasma and increase following heparin treatment; and (v) TFPIα is the isoform in platelets. They differ in that: (i) mouse TFPI circulates at a ~20-fold higher concentration; (ii) mouse lines with isolated isoform deletions show this circulating mouse TFPI is derived from TFPIγ; (iii) sequences homologous to the mouse TFPIγ exon are present in many species, including man, but in primates are unfavorable for splicing; and (iv) tandem mass spectrometry (MS/MS) detects sequences for TFPI isoforms α and β in human plasma and α and γ in mouse plasma. Conclusion To dissect the pathophysiological roles of human TFPIα and TFPIβ, studies in TFPIγ null mice, expressing only α and β, only α or only β should better reflect the human situation.
Keywords: alternative splicing; hemostasis; mice; protein isoforms; thrombosis.
© 2018 International Society on Thrombosis and Haemostasis.