Although pre-clinical models of pain are useful for defining relationships between biological mechanisms and pain, common methods testing peripheral sensitivity do not translate to the human pain experience. Facial grimace scales evaluate affective pain levels in rodent models by capturing and scoring spontaneous facial expression. But, the Rat Grimace Scale (RGS) has not assessed the common disorder of temporomandibular joint (TMJ) pain. A rat model of TMJ pain induced by jaw loading (1 hr/day for 7 days) was used to investigate the time course of RGS scores and compare them between different loading magnitudes with distinct peripheral sensitivity profiles (0N-no sensitivity, 2N-acute sensitivity, 3.5N-persistent sensitivity). In the 3.5N group, RGS is elevated over baseline during the loading period and one day after loading and is correlated with peripheral sensitivity (ρ = -0.48, p = 0.002). However, RGS is not elevated later when that group exhibits peripheral sensitivity and moderate TMJ condylar cartilage degeneration. Acutely, RGS is elevated in the 3.5N loading group over the other loading groups (p < 0.001). These findings suggest that RGS is an effective tool for detecting spontaneous TMJ pain and that spontaneous pain is detectable in rats that develop persistent TMJ sensitivity, but not in rats with acute resolving sensitivity.