As mathematical models and computational tools become more sophisticated and powerful to accurately depict system dynamics, numerical methods that were previously considered computationally impractical started being utilized for large-scale simulations. Methods that characterize a rare event in biochemical systems are part of such phenomenon, as many of them are computationally expensive and require high-performance computing. In this paper, we introduce an enhanced version of the doubly weighted stochastic simulation algorithm (dwSSA) (Daigle et al. in J Chem Phys 134:044110, 2011), called dwSSA[Formula: see text], that significantly improves the speed of convergence to the rare event of interest when the conventional multilevel cross-entropy method in dwSSA is either unable to converge or converges very slowly. This achievement is enabled by a novel polynomial leaping method that uses past data to detect slow convergence and attempts to push the system toward the rare event. We demonstrate the performance of dwSSA[Formula: see text] on two systems-a susceptible-infectious-recovered-susceptible disease dynamics model and a yeast polarization model-and compare its computational efficiency to that of dwSSA.
Keywords: Gillespie algorithm; Importance sampling; Rare event probability estimation; SSA; Stochastic simulation; dwSSA.