Purpose: Dipole antennas that provide high transmit field penetration with large coverage, and their use in a parallel transmit setup, may be advantageous in minimizing B -field inhomogeneities at ultra-high field, i.e 7T. We have developed and evaluated an 8-channel RF dipole coil array for imaging the entire cerebral and cerebellar regions in man.
Methods: A coil array was modeled with seven dipoles: six placed covering the occipital and temporal lobes; one covering the parietal lobe; and two loops covering the frontal lobe. Center-shortened and fractionated dipoles were simulated for the array configuration and assessed with respect to B -field at maximum specific absorption rate averaged over 10 g tissue regions in human brain. The whole-brain center-shortened dipoles with frontal loops coil array was constructed and its transmit properties were assessed with respect to MR images, B -field, and homogeneity.
Results: In simulations, the dipole arrays showed comparable performances to cover the whole-brain. However, for ease of construction, the center-shortened dipole was favored. High spatial resolution anatomical images of the human brain with the coil array demonstrated a full coverage of the cerebral cortex and cerebellum.
Conclusions: The 8-channel center-shortened dipoles and frontal loops coil array promises remarkable efficiency in highly challenging regions as the cerebellum, and phase-only RF shimming of whole-brain could greatly benefit ultra-high field magnetic resonance imaging of the human brain at 7T.
Keywords: 7T; center-shortened dipole; parallel transmit; radiofrequency coil array; ultra-high field; whole human brain imaging.
© 2018 International Society for Magnetic Resonance in Medicine.