ITCH (aka Atrophin-1-interacting protein 4) is a prominent member of the NEDD4 HECT (Homologous to E6AP C-Terminus) E3 ubiquitin ligase family that regulates numerous cellular functions including inflammatory responses through T-cell activation, cell differentiation, and apoptosis. Known intracellular targets of ITCH-dependent ubiquitylation include receptor proteins, signaling molecules, and transcription factors. The HECT C-terminal lobe of ITCH contains the conserved catalytic cysteine required for the covalent attachment of ubiquitin onto a substrate and polyubiquitin chain assembly. We report here the complete experimentally determined 1H, 13C, and 15N backbone and sidechain resonance assignments for the HECT C-terminal lobe of ITCH (residues 784-903) using heteronuclear, multidimensional NMR spectroscopy. These resonance assignments will be used in future NMR-based studies to examine the role of dynamics and conformational flexibility in HECT-dependent ubiquitylation as well as deciphering the structural and biochemical basis for polyubiquitin chain synthesis and specificity by ITCH.
Keywords: Atrophin-1-interacting protein 4; E3 ubiquitin ligase; HECT; ITCH; NMR spectroscopy; Ubiquitin; Ubiquitylation.