The human circadian system regulates hunger independently of behavioral factors, resulting in a trough in the biological morning and a peak in the biological evening. However, the role of the only known orexigenic hormone, ghrelin, in this circadian rhythm is unknown. Furthermore, although shift work is an obesity risk factor, the separate effects of the endogenous circadian system, the behavioral cycle, and circadian misalignment on ghrelin has not been systematically studied. Here we show-by using two 8-day laboratory protocols-that circulating active (acylated) ghrelin levels are significantly impacted by endogenous circadian phase in healthy adults. Active ghrelin levels were higher in the biological evening than the biological morning (fasting +15.1%, P = 0.0001; postprandial +10.4%, P = 0.0002), consistent with the circadian variation in hunger (P = 0.028). Moreover, circadian misalignment itself (12-h behavioral cycle inversion) increased postprandial active ghrelin levels (+5.4%; P = 0.04). While not significantly influencing hunger (P > 0.08), circadian misalignment increased appetite for energy-dense foods (all P < 0.05). Our results provide possible mechanisms for the endogenous circadian rhythm in hunger, as well as for the increased risk of obesity among shift workers.