Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding

Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10154-10159. doi: 10.1073/pnas.1803667115. Epub 2018 Sep 24.

Abstract

The hippocampus plays key roles in cognition and affect and serves as a model system for structure/function studies in animals. So far, its complex anatomy has challenged investigations targeting its substructural organization in humans. State-of-the-art MRI offers the resolution and versatility to identify hippocampal subfields, assess its microstructure, and study topographical principles of its connectivity in vivo. We developed an approach to unfold the human hippocampus and examine spatial variations of intrinsic functional connectivity in a large cohort of healthy adults. In addition to mapping common and unique connections across subfields, we identified two main axes of subregional connectivity transitions. An anterior/posterior gradient followed long-axis landmarks and metaanalytical findings from task-based functional MRI, while a medial/lateral gradient followed hippocampal infolding and correlated with proxies of cortical myelin. Findings were consistent in an independent sample and highly stable across resting-state scans. Our results provide robust evidence for long-axis specialization in the resting human hippocampus and suggest an intriguing interplay between connectivity and microstructure.

Keywords: MRI; connnectome; hippocampus; microstructure; neuroimaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Connectome*
  • Female
  • Hippocampus / diagnostic imaging*
  • Hippocampus / physiology*
  • Humans
  • Magnetic Resonance Imaging*
  • Male
  • Myelin Sheath / metabolism