Pulmonary "air leaks," typically the result of pleural injury caused by lung surgery or chest trauma, result in the accumulation of air in the pleural space (pneumothorax). Air leaks are a major source of morbidity and prolonged hospitalization after pulmonary surgery. Previous work has demonstrated structural heteropolysaccharide (pectin) binding to the mouse pleural glycocalyx. The similar lectin-binding characteristics and ultrastructural features of the human and mouse pleural glycocalyx suggested the potential application of these polymers in humans. To investigate the utility of pectin-based polymers, we developed a simulacrum using freshly obtained human pleura. Pressure-decay leak testing was performed with an inflation maneuver that involved a 3 s ramp to a 3 s plateau pressure; the inflation was completely abrogated after needle perforation of the pleura. Using nonbiologic materials, pressure-decay leak testing demonstrated an exponential decay with a plateau phase in materials with a Young's modulus less than 5. In human pleural testing, the simulacrum was used to test the sealant function of four mixtures of pectin-based polymers. A 50% high-methoxyl pectin and 50% carboxymethylcellulose mixture demonstrated no sealant failures at transpleural pressures of 60 cmH2 O. In contrast, pectin mixtures containing 50% low-methoxyl pectin, 50% amidated low-methoxyl pectins, or 100% carboxymethylcellulose demonstrated frequent sealant failures at transpleural pressures of 40-50 cmH2 O (p < 0.001). Inhibition of sealant adhesion with enzyme treatment, dessication and 4°C cooling suggested an adhesion mechanism dependent upon polysaccharide interpenetration. We conclude that pectin-based heteropolysaccharides are a promising air-tight sealant of human pleural injuries. © 2018 Wiley Periodicals, Inc. J. Biomed. Mater. Res. Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 799-806, 2019.
Keywords: air leak; lung; pectin; sealant.
© 2018 Wiley Periodicals, Inc.