Mechanisms of primary resistance to EGFR targeted therapy in advanced lung adenocarcinomas

Lung Cancer. 2018 Oct:124:110-116. doi: 10.1016/j.lungcan.2018.07.039. Epub 2018 Jul 29.

Abstract

Introduction: Increasing evidence leads to a ratiocination that genetic heterogeneity of the lung adenocarcinoma with EGFR mutations may impact clinical responses and outcomes to EGFR tyrosine kinase inhibitor (TKI) treatments.

Methods: We performed genetic profiling of pre-treatment samples of 69 lung adenocarcinoma patients, including tumor FFPE and cell-free DNA (cfDNA), targeting 416 cancer-related genes using next generation sequencing. We analyzed mutation concordance across sample types and investigated potential mechanisms that confer primary resistance to EGFR-TKIs in patients with short progression-free survival (PFS) versus those with long PFS.

Results: We detected a total of 200 actionable genetic alterations (mean: 2.9 variants/patient, range: 1-7 variants) in tumor FFPE and 140 actionable genetic alterations (mean: 2.0 variants/patient, range: 0-5 variants) in matched cfDNA, respectively. All patients had EGFR TKI-sensitizing mutations, including EGFR Ex19del, L858R, G719S/C, and L861Q. Concurrent TP53 mutations were most commonly observed in 72.5% of patients, followed by EGFR amplification (20.3%), RB1 (10.1%), PIK3CA (7.2%), and MYC (5.8%). For EGFR activating mutations, the concordance rate was 88.2% between cfDNA and FFPE samples. Furthermore, we identified genes that potentially confer primary resistance to EGFR-TKIs including CDC73, SMAD4, RB1 and PIK3CA. We also report signaling pathways enriched in patients with TKI primary resistance.

Conclusions: We note the genetic complexity and heterogeneity of EGFR-mutated lung adenocarcinoma and underscore that mutation status is highly concordant between tumor FFPE and cfDNA samples. This study also highlights the alterations that potentially confer primary resistance to EGFR TKI treatments in patients who demonstrated short PFS.

Keywords: EGFR mutation; Genetic heterogeneity; Lung adenocarcinoma; Next-generation sequencing; Primary resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma / drug therapy*
  • Adenocarcinoma / genetics
  • Adenocarcinoma / mortality
  • Adult
  • Aged
  • Aged, 80 and over
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use*
  • Cell-Free Nucleic Acids / genetics
  • Drug Resistance, Neoplasm / genetics
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / genetics
  • Gene Expression Profiling
  • Humans
  • Liquid Biopsy
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / genetics
  • Lung Neoplasms / mortality
  • Male
  • Middle Aged
  • Mutation / genetics*
  • Progression-Free Survival
  • Protein Kinase Inhibitors / therapeutic use*
  • Retinoblastoma Binding Proteins / genetics
  • Retrospective Studies
  • Signal Transduction / genetics
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Proteins / genetics*
  • Ubiquitin-Protein Ligases / genetics

Substances

  • Antineoplastic Agents
  • CDC73 protein, human
  • Cell-Free Nucleic Acids
  • Protein Kinase Inhibitors
  • RB1 protein, human
  • Retinoblastoma Binding Proteins
  • Tumor Suppressor Protein p53
  • Tumor Suppressor Proteins
  • Ubiquitin-Protein Ligases
  • EGFR protein, human
  • ErbB Receptors