Speciation genes are more likely to have discordant gene trees

Evol Lett. 2018 Aug 8;2(4):281-296. doi: 10.1002/evl3.77. eCollection 2018 Aug.

Abstract

Speciation genes are responsible for reproductive isolation between species. By directly participating in the process of speciation, the genealogies of isolating loci have been thought to more faithfully represent species trees. The unique properties of speciation genes may provide valuable evolutionary insights and help determine the true history of species divergence. Here, we formally analyze whether genealogies from loci participating in Dobzhansky-Muller (DM) incompatibilities are more likely to be concordant with the species tree under incomplete lineage sorting (ILS). Individual loci differ stochastically from the true history of divergence with a predictable frequency due to ILS, and these expectations-combined with the DM model of intrinsic reproductive isolation from epistatic interactions-can be used to examine the probability of concordance at isolating loci. Contrary to existing verbal models, we find that reproductively isolating loci that follow the DM model are often more likely to have discordant gene trees. These results are dependent on the pattern of isolation observed between three species, the time between speciation events, and the time since the last speciation event. Results supporting a higher probability of discordance are found for both derived-derived and derived-ancestral DM pairs, and regardless of whether incompatibilities are allowed or prohibited from segregating in the same population. Our overall results suggest that DM loci are unlikely to be especially useful for reconstructing species relationships, even in the presence of gene flow between incipient species, and may in fact be positively misleading.

Keywords: Dobzhansky–Muller incompatibilities; gene tree discordance; incomplete lineage sorting; reproductive isolation; speciation.