Background: Pancreatic ductal adenocarcinoma has dismal prognosis. Most patients receive radiation therapy (RT), which is complicated by respiration induced organ motion in upper abdomen. The purpose of this study is to report our early clinical experience in a novel self-gated k-space sorted four-dimensional magnetic resonance imaging (4D-MRI) with slab-selective (SS) excitation to highlight tumor infiltrating blood vessels for pancreatic RT.
Methods: Ten consecutive patients with borderline resectable or locally advanced pancreatic cancer were recruited to the study. Non-contrast 4D-MRI with and without slab-selective excitation and 4D-CT with delay contrast were performed on all patients. Vessel-tissue CNR were calculated for aorta and critical vessels (superior mesenteric artery or superior mesenteric vein) encompassed by tumor. Respiratory motion trajectories for tumor, as well as involved vessels were analyzed on SS-4D-MRI. Intra-class cross correlation (ICC) between tumor volume and involved vessels were calculated.
Results: Among all 4D imaging modalities evaluated, SS-4D-MRI sampling trajectory results in images with highest vessel-tissue CNR comparing to non-slab-selective 4D-MRI and 4D-CT for all patients studied. Average (±standard deviation) CNR for involved vessels are 13.1 ± 8.4 and 3.2 ± 2.7 for SS-4D-MRI and 4D-CT, respectively. The ICC factors comparing tumor and involved vessels motion trajectories are 0.93 ± 0.10, 0.65 ± 0.31 and 0.77 ± 0.23 for superior-inferior, anterior-posterior and medial-lateral directions respectively.
Conclusions: A novel 4D-MRI sequence based on 3D-radial sampling and slab-selective excitation has been assessed for pancreatic cancer patients. The non-contrast 4D-MRI images showed significantly better contrast to noise ratio for the vessels that limit tumor resectability compared to 4D-CT with delayed contrast. The sequence has great potential in accurately defining both the tumor and boost volume margins for pancreas RT with simultaneous integrated boost.