Realizing multi-functional all-optical data processing on nanoscale SiC waveguides

Sci Rep. 2018 Oct 5;8(1):14859. doi: 10.1038/s41598-018-33073-y.

Abstract

All-optical logics are realized on nanoscale SiC waveguides with add-drop micro-ring functionality, including the TE/TM polarized data decoding, the dual-port Kerr switching and gating beyond 12 Gbit/s. With employing the C-C bond enriched SiC thin film upon thermal oxide, the nonlinear refractive index of up to 2.44 × 10-12 cm2/W enables the asymmetric waveguide with polarization distinguishable transmission, which provides a polarization-selectivity to discreminate the TE/TM polarized data decoding with an nearly 9-dB extinction ratio. The TE/TM polarized decoding performance is comparable with a state-of-the-art fiberized in-line polarizer. The complementary transmission in the bus waveguide port facilitates the dual-port Kerr switching for data format conversion/inversion in both add/drop channels. Owing to the TE/TM polarization discriminated throughput, the asymmetric add-drop waveguide micro-ring also permits all-optical AND logic gating functions, where the ON-state outputs only if the pump bit is set at ON state and the probe bit with matched polarization. These results reveal the multi-functionality of the nanoscale SiC add-drop micro-ring waveguide for future photonic logics on chip.