This study was conducted to elucidate the inherent potential of Bacillus sp. MR-1/2, which was isolated from root zone of maize crop grown on a textile wastewater-irrigated soil. The isolated strain was identified through its ribosomal RNA sequence. Under in vitro conditions, the strain demonstrated its tolerance for high concentrations of various heavy metal ions as determined by minimum inhibitory concentration. Moreover, the strain MR-1/2 exhibited many important phytobeneficial traits such as inorganic P solubilization and 1-aminocyclopropane-1-carboxylate (ACC) deaminase ability even under high metal and salt stress. Results showed that the strain proficiently decolorizes various azo dye compounds, e.g., reactive black-5, reactive red-120, and direct blue-1 and congo red, in broth culture. The bioremediation potential of the strain MR-1/2 was further confirmed by analyzing the retrieved azoreductase gene sequence through bioinformatics tools, whereby a subsequent prediction revealed that the azoreductase enzyme activity was involved in decolorization process. When mung bean seeds were grown in pots under various concentrations of decolorized and non-decolorized azo dye, the Bacillus sp. MR-1/2 not only alleviated the azo dye toxicity, but also increased the plant growth parameters. In conclusion, the strain MR-1/2 efficiently decolorized the azo dyes and helped in mung bean plant growth by alleviating azo dye toxicity.
Keywords: Azo dyes; Bacillus; Decolorization; Metals; Plant growth; Wastewater.