Osteoclasts are multinucleated cells that originate from hemopoietic stem cells. Targeting over activated osteoclasts is thought to be an effective therapeutic approach to osteoporosis. In a previous study, we reported that Tatarinan O, a lignin-like compound, suppressed RANKL-induced osteoclastogenesis. In this study, we further examined the effects on osteoclast formation of three lignin-like compounds including Tatarinan N (TN), Tatarinan U (TU) and Tatarinan V (TV), all containing a common structure of asarone. We found that only TN suppressed RANKL-induced osteoclast differentiation, bone resorption pit formation and F-acting ring formation. TU and TV did not influence RANKL-induced osteoclastogenesis. We also found that TN dose-dependently inhibited the expression of osteoclastogenesis-associated genes, including TRAP, cathepsin K and MMP-9. Furthermore, we found that TN down-regulated the key transcription factor NFATc1 and c-Fos by preventing the activation of NF-κB and phosphorylation of MAPKs including ERK1/2 and p38 but not JNK. TN attenuated calcineurin expression via suppression of the Btk-PLCγ2 cascade and reduction of intracellular Ca2+, modulating NFATc1 activation. Taking together, our results indicated that TN might have therapeutic potential for osteoporosis.
Keywords: MAPKs; NF-κB; NFATc1; Osteoclasts; Tatarinan N; c-Fos.
Copyright © 2018 Elsevier B.V. All rights reserved.