Alzheimer's disease (AD) is a common neurodegenerative disorder in elderly people, and is associated with a heavy financial burden on our society. The use of serologic biomarkers is an attractive method to diagnose AD. Although the determination of blood-based biomarkers for AD has been explored in many studies, few practical diagnosis methods have been used in the clinic. In this work, we constructed a "chemical tongue" sensor array that is easy to use and based on four kinds of fluorescent gold nanoclusters (Au NCs) for discriminating between multiple proteins at nanomolar concentrations. The device utilizes a linear discrimination analysis based on fluorescence intensity response patterns. Using this chemical tongue sensor array, multiple proteins can be confidently identified even in complex biological systems, such as human urine. Most importantly, sera of AD patients could be effectively discriminated from those of osteoarthritis patients, or of healthy people. Also, the results obtained for the AD patients by the chemical tongue sensor array were validated by CSF determination. We conclude that the chemical tongue sensor array manufactured in this work paves the way for designing an auxiliary diagnosis method for AD that is less invasive and more convenient for the large-scale screening of patients.
Keywords: Alzheimer’s disease; Gold nanoclusters; Pattern recognition; Protein discrimination; Sensor array.
Copyright © 2018 Elsevier B.V. All rights reserved.