Engineering conjugated polymer nanoparticles (CPNs) with an easily-modified surface is essential to construct multifunctional nanoprobes as contrast agents for dual-modal photoacoustic (PA) and fluorescence imaging, which can take advantages of the complementary information from a single modality. In this study, an abundant protein with plenty of functional groups was introduced for the first time to produce easily-modified CPNs, leading to a robust nanoplatform to engineer PA-based multifunctional nanoprobes due to their strong optical absorption in the near-infrared region. Meanwhile, the bovine serum albumin (BSA)-modified CPNs were further engineered by introducing gold clusters in situ, which can serve as fluorescent nanoprobes for dual-modal molecular imaging. In particular, the developed nanoplatform exhibited superior stability and excellent biocompatibility, making it an ideal candidate for various cancer-theranostics applications. More importantly, our imaging results demonstrated that the BSA-modified CPNs were excellent candidates to design PA-based contrast agents for multimodal imaging using the function of the protein. In addition, other functional blocks can also be added to the nanoplatform based on its easily-modified surface, making it a general method for the construction of multifunctional nanoprobes for disease theranostics.