Lin-CCR2+ hematopoietic stem and progenitor cells overcome resistance to PD-1 blockade

Nat Commun. 2018 Oct 17;9(1):4313. doi: 10.1038/s41467-018-06182-5.

Abstract

Immune checkpoint blockade using anti-PD-1 monoclonal antibodies has shown considerable promise in the treatment of solid tumors, but brain tumors remain notoriously refractory to treatment. In CNS malignancies that are completely resistant to PD-1 blockade, we found that bone marrow-derived, lineage-negative hematopoietic stem and progenitor cells (HSCs) that express C-C chemokine receptor type 2 (CCR2+) reverses treatment resistance and sensitizes mice to curative immunotherapy. HSC transfer with PD-1 blockade increases T-cell frequency and activation within tumors in preclinical models of glioblastoma and medulloblastoma. CCR2+HSCs preferentially migrate to intracranial brain tumors and differentiate into antigen-presenting cells within the tumor microenvironment and cross-present tumor-derived antigens to CD8+ T cells. HSC transfer also rescues tumor resistance to adoptive cellular therapy in medulloblastoma and glioblastoma. Our studies demonstrate a novel role for CCR2+HSCs in overcoming brain tumor resistance to PD-1 checkpoint blockade and adoptive cellular therapy in multiple invasive brain tumor models.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Neoplasms / immunology
  • Brain Neoplasms / therapy*
  • Cell Differentiation
  • Cell Movement
  • Dendritic Cells / immunology
  • Drug Resistance, Neoplasm
  • Female
  • Glioblastoma / immunology
  • Glioblastoma / therapy*
  • Hematopoietic Stem Cell Transplantation*
  • Immunotherapy, Adoptive*
  • Lymphocyte Activation
  • Medulloblastoma / immunology
  • Medulloblastoma / therapy*
  • Mice, Transgenic
  • T-Lymphocytes / physiology