Generation of a CLTA reporter human induced pluripotent stem cell line, CRMi001-A-1, using the CRISPR/Cas9 system to monitor endogenous clathrin trafficking

Stem Cell Res. 2018 Dec:33:95-99. doi: 10.1016/j.scr.2018.10.001. Epub 2018 Oct 3.

Abstract

The most highly studied endocytic pathway, clathrin-dependent endocytosis, mediates a wide range of fundamental processes including nutrient internalization, receptor recycling, and signal transduction. In order to model tissue specific and developmental aspects of this process, CRISPR/Cas9 genomic editing was utilized to fluorescently label the C-terminus of clathrin light chain A (CLTA) within the phenotypically normal, parental CRMi001-A human induced pluripotent stem cell line. Successfully edited cells were isolated by fluorescently activated cell sorting, remained karyotypically normal, and maintained their differentiation potential. This cell line facilitates imaging of endogenous clathrin trafficking within varied cell types.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • CRISPR-Cas Systems / genetics*
  • Cell Line
  • Clathrin / metabolism*
  • Genes, Reporter
  • Humans
  • Induced Pluripotent Stem Cells / metabolism*

Substances

  • Clathrin