Background: Differences in CBCT units and the lack of standardization result in exposure to radiation doses beyond what is required for diagnostic purposes, especially when planning the surgical placement of dental implants.
Aim: To assess the influence of low- and high-dose milliamperage settings on CBCT images for objective and subjective implant planning among senior specialists (5 years of experience) and juniors (fresh graduates).
Materials and methods: Two dry skulls (4 hemi-maxillary segments of the maxilla and 4 hemi-maxillary segments of the mandible) were scanned under low (2 mA) and high (6.3 mA) dosage settings using the Carestream CS 9300 machine. Cross-sectional slices of both image qualities were evaluated by the 5 seniors and the 5 juniors for subjective image utility for implant planning and for objective linear bone measurements.
Results: There were no significant differences in bone measurements taken on high- or low-dose images by all seniors and by the majority of juniors (p > 0.05). In qualitative image assessments, there was independence between assessment and image quality for almost all observers. For planning posterior mandibular implant placement, increased dosage improved concordance and kappa values between low- and high-dose images for senior observers (from K = 0.287 at low dose to K = 0.718 at high does) but not for juniors (K = 0.661 and K = 0.509 for low and high dose, respectively).
Conclusion: Reduction in milliamperage did not affect diagnostic image quality for objective bone measurements and produced sufficient concordance for qualitative assessment. Judicious optimization of milliamperage settings based on individual diagnostic requirements can result in significant dose reduction without compromising diagnostic decision-making.
Keywords: Cone beam computed tomography; Image resolution; Implant-placement planning; Radiation dose alteration.