Purpose of review: Repetitive transcranial magnetic stimulation (rTMS) noninvasively modulates brain excitability in humans and influences mediators of plasticity in animals. When applied in humans in the months to years after stroke, potentiation of motor recovery has been limited. Recently, investigators have shifted rTMS administration into the early weeks following stroke, when injury-induced plasticity could be maximally engaged. This article provides an overview of basic mechanisms of rTMS, consideration of its interaction with various forms of neuroplasticity, and a summary of the highest quality clinical evidence for rTMS given early after stroke.
Recent findings: Studies of repetitive magnetic stimulation in vitro and in vivo have found modulation of excitatory and inhibitory neurotransmission and induction of cellular mechanisms supporting plasticity. A handful of clinical studies have shown sustained improvements in grip strength and UE motor impairment when rTMS is delivered in the first weeks after stroke. Though in its infancy, recent research suggests a plasticity-enhancing influence and modest motor recovery potentiation when rTMS is delivered early after stroke.
Keywords: Associative plasticity; Homeostatic plasticity; Motor recovery; Repetitive transcranial magnetic stimulation.