Endothelial FN (Fibronectin) Deposition by α5β1 Integrins Drives Atherogenic Inflammation

Arterioscler Thromb Vasc Biol. 2018 Nov;38(11):2601-2614. doi: 10.1161/ATVBAHA.118.311705.

Abstract

Objective- Alterations in extracellular matrix quantity and composition contribute to atherosclerosis, with remodeling of the subendothelial basement membrane to an FN (fibronectin)-rich matrix preceding lesion development. Endothelial cell interactions with FN prime inflammatory responses to a variety of atherogenic stimuli; however, the mechanisms regulating early atherogenic FN accumulation remain unknown. We previously demonstrated that oxLDL (oxidized low-density lipoprotein) promotes endothelial proinflammatory gene expression by activating the integrin α5β1, a classic mediator of FN fibrillogenesis. Approach and Results- We now show that oxLDL drives robust endothelial FN deposition and inhibiting α5β1 (blocking antibodies, α5 knockout cells) completely inhibits oxLDL-induced FN deposition. Consistent with this, inducible endothelial-specific α5 integrin deletion in ApoE knockout mice significantly reduces atherosclerotic plaque formation, associated with reduced early atherogenic inflammation. Unlike TGFβ (transforming growth factor β)-induced FN deposition, oxLDL does not induce FN expression (mRNA, protein) or the endothelial-to-mesenchymal transition phenotype. In addition, we show that cell-derived and plasma-derived FN differentially affect endothelial function, with only cell-derived FN capable of supporting oxLDL-induced VCAM-1 (vascular cell adhesion molecule 1) expression, despite plasma FN deposition by oxLDL. The inclusion of alternative exon EIIIA (EDA) of FN (EIIIA) and alternative exon EIIIB (EDB) of FN (EIIIB) domains in cell-derived FN mediates this effect, as EIIIA/EIIIB knockout endothelial cells show diminished oxLDL-induced inflammation. Furthermore, our data suggest that EIIIA/EIIIB-positive cellular FN is required for maximal α5β1 recruitment to focal adhesions and FN fibrillogenesis. Conclusions- Taken together, our data demonstrate that endothelial α5 integrins drive oxLDL-induced FN deposition and early atherogenic inflammation. Additionally, we show that α5β1-dependent endothelial FN deposition mediates oxLDL-dependent endothelial inflammation and FN fibrillogenesis.

Keywords: atherosclerosis; extracellular matrix; fibronectin; inflammation; integrins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antigens, CD / genetics
  • Antigens, CD / metabolism
  • Aortic Diseases / genetics
  • Aortic Diseases / metabolism*
  • Aortic Diseases / pathology
  • Atherosclerosis / genetics
  • Atherosclerosis / metabolism*
  • Atherosclerosis / pathology
  • Cadherins / genetics
  • Cadherins / metabolism
  • Carotid Artery Diseases / genetics
  • Carotid Artery Diseases / metabolism*
  • Carotid Artery Diseases / pathology
  • Cells, Cultured
  • Disease Models, Animal
  • Endothelial Cells / drug effects
  • Endothelial Cells / metabolism*
  • Endothelial Cells / pathology
  • Fibronectins / deficiency
  • Fibronectins / genetics
  • Fibronectins / metabolism*
  • Focal Adhesions / metabolism
  • Focal Adhesions / pathology
  • Humans
  • Inflammation / genetics
  • Inflammation / metabolism*
  • Inflammation / pathology
  • Integrin alpha5beta1 / deficiency
  • Integrin alpha5beta1 / genetics
  • Integrin alpha5beta1 / metabolism*
  • Lipoproteins, LDL / pharmacology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout, ApoE
  • Plaque, Atherosclerotic*
  • Signal Transduction

Substances

  • Antigens, CD
  • Cadherins
  • Fibronectins
  • Integrin alpha5beta1
  • Lipoproteins, LDL
  • cadherin 5
  • oxidized low density lipoprotein