The organic-inorganic halide perovskites (OIHPs) have shown enormous potential for solar cells, while problems like the current-voltage hysteresis and the long-term instability have seriously hindered their applications. Ion migrations are believed to be relevant. But the atomistic details still remain unclear. Here we study the migrations of ions in CH3NH3PbI3 (MAPbI3) at varying temperatures ( T's), using combined experimental and first-principle theoretical methods. Classical hopping of the iodide ions is the main migration mechanism at moderate T's. Below ∼270 K, the kinetic constant for ionic migration still shows an Arrenhius dependency, but the much lower activation energy is attributed to the migration of H+. A gradual classical-to-quantum transition takes place between ∼140 and ∼80 K. Below ∼80 K, the kinetic constant becomes T-independent, suggesting that deep quantum tunneling of H+ takes over. This study gives direct experimental evidence for the migrations of H+s in MAPbI3 and confirms their quantum nature.