Rationale: Acute hypercapnic respiratory failure (AHRF) treated with non-invasive ventilation in the ICU is frequently caused by chronic obstructive pulmonary disease (COPD) exacerbations and obesity-hypoventilation syndrome, the latter being most often associated with obstructive sleep apnea. Overlap syndrome (a combination of COPD and obstructive sleep apnea) may represent a major burden in this population, and specific diagnostic pathways are needed to improve its detection early after ICU discharge.
Objectives: To evaluate whether pulmonary function tests can identify a high probability of obstructive sleep apnea in AHRF survivors and outperform common screening questionnaires to identify the disorder.
Methods: Fifty-three patients surviving AHRF (31 males; median age 67 years (interquartile range: 62-74) participated in the study. Anthropometric data were recorded and body plethysmography was performed 15 days after ICU discharge. A sleep study was performed 3 months after ICU discharge.
Results: The apnea-hypopnea index was negatively associated with static hyperinflation as measured by the residual volume to total lung capacity ratio in the % of predicted (coefficient = -0.64; standard error 0.17; 95% CI -0.97 to -0.31; p<0.001). A similar association was observed in COPD patients only: coefficient = -0.65; standard error 0.19; 95% CI -1.03 to -0.26; p = 0.002. Multivariate analysis with penalized maximum likelihood confirmed that the residual volume to total lung capacity ratio was the main contributor for apnea-hypopnea index variance in addition to classic predictors. Screening questionnaires to select patients at risk for sleep-disordered breathing did not perform well.
Conclusions: In AHRF survivors, static hyperinflation is negatively associated with the apnea-hypopnea index in both COPD and non-COPD patients. Measuring static hyperinflation in addition to classic predictors may help to increase the recognition of obstructive sleep apnea as common screening tools are of limited value in this specific population.