The objective of the present study was to develop a population pharmacodynamic (PPD) model to describe the glycated hemoglobin (HbA1c)-lowering effects of metformin in type 2 diabetes mellitus patients with and without secondary failure and to characterize changes in HbA1c levels in the two subpopulations using a mixture model. Information on patients was collected retrospectively from electronic medical records. In this study, the mixture model was used to characterize the bimodal effects of metformin. A PPD analysis was performed using NONMEM 7.3.0. A physiological indirect response model, based on 829 HbA1c levels of 69 patients, described the time course for the HbA1c-lowering effects of metformin. Evidence for the different effectiveness of metformin subpopulations was provided using the mixture model. In the final PPD model, the inhibition effect was constant over a study duration in a patient subpopulation without secondary failure. In contrast, the inhibition effect decreased as a function of time after start of metformin treatment in a subpopulation with secondary failure. These results indicated that HbA1c improvements appeared to deteriorate over time in patients with secondary failure. In a PPD analysis of metformin, it was possible to assign patients with secondary failure using the mixture model.
Keywords: Electronic medical record; Glycated hemoglobin; Metformin; Mixture model; Population pharmacodynamics; Secondary failure.
Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.