Quercetin is a flavonoid widely found in plants and marketed to the public as a supplement. Several studies have reported its effect on glial cells. This study aimed to examine the effect of quercetin on the development of neuropathic pain and the underlying mechanism in a spared nerve injury (SNI) rat model. Male Sprague-Dawley rats randomly assigned to the control or the quercetin group were subjected to SNI of the sciatic nerve. We measured pain behaviors on the hind paw and glial fibrillary acidic protein (GFAP) in the dorsal root ganglion (DRG) and spinal cord. Oral administration of 1% quercetin, begun before surgery, attenuated mechanical allodynia compared to the control group at days 7 and 10 after SNI. On the other hand, established pain was not attenuated in a post-dose group in which quercetin was begun 7 days after SNI. Quercetin inhibited GFAP in the satellite glial cells of the ipsilateral L5 DRG on day 7 compared to the control group. Quercetin suppressed the development of neuropathic pain through a mechanism partly involving the inhibition of satellite glial cells. As its safety is well established, quercetin has great potential for clinical use in pain treatment.
Keywords: alternative medicine; dorsal root ganglion; flavonoid; glial fibrillary acidic protein.