Multiparametric MRI model with dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer diagnosis with high accuracy

J Magn Reson Imaging. 2019 Mar;49(3):864-874. doi: 10.1002/jmri.26285. Epub 2018 Oct 30.

Abstract

Background: The MRI Breast Imaging-Reporting and Data System (BI-RADS) lexicon recommends that a breast MRI protocol contain T2 -weighted and dynamic contrast-enhanced (DCE) MRI sequences. The addition of diffusion-weighted imaging (DWI) significantly improves diagnostic accuracy. This study aims to clarify which descriptors from DCE-MRI, DWI, and T2 -weighted imaging are most strongly associated with a breast cancer diagnosis.

Purpose/hypothesis: To develop a multiparametric MRI (mpMRI) model for breast cancer diagnosis incorporating American College of Radiology (ACR) BI-RADS recommended descriptors for breast MRI with DCE, T2 -weighted imaging, and DWI with apparent diffusion coefficient (ADC) mapping.

Study type: Retrospective.

Subjects: In all, 188 patients (mean 51.6 years) with 210 breast tumors (136 malignant and 74 benign) who underwent mpMRI from December 2010 to September 2014.

Field strength/sequence: IR inversion recovert DCE-MRI dynamic contrast-enhanced magnetic resonance imaging VIBE Volume-Interpolated-Breathhold-Examination FLASH turbo fast-low-angle-shot TWIST Time-resolved angiography with stochastic Trajectories.

Assessment: Two radiologists in consensus and another radiologist independently evaluated the mpMRI data. Characteristics for mass (n = 182) and nonmass (n = 28) lesions were recorded on DCE and T2 -weighted imaging according to BI-RADS, as well as DWI descriptors. Two separate models were analyzed, using DCE-MRI BI-RADS descriptors, T2 -weighted imagines, and ADCmean as either a continuous or binary form using a previously published ADC cutoff value of ≤1.25 × 10-3 mm2 /sec for differentiation between benign and malignant lesions. Histopathology was the standard of reference.

Statistical tests: χ2 test, Fisher's exact test, Kruskal-Wallis test, Pearson correlation coefficient, multivariate logistic regression analysis, Hosmer-Lemeshow test of goodness-of-fit, receiver operating characteristics analysis.

Results: In Model 1, ADCmean (P = 0.0031), mass margins with DCE (P = 0.0016), and delayed enhancement with DCE (P = 0.0016) were significantly and independently associated with breast cancer diagnosis; Model 2 identified ADCmean (P = 0.0031), mass margins with DCE (P = 0.0012), initial enhancement (P = 0.0422), and delayed enhancement with DCE (P = 0.0065) to be significantly independently associated with breast cancer diagnosis. T2 -weighted imaging variables were not included in the final models. DATA CONCLUSION: mpMRI with DCE-MRI and DWI with ADC mapping enables accurate breast cancer diagnosis. A model using quantitative and qualitative descriptors from DCE-MRI and DWI identifies breast cancer with a high diagnostic accuracy. T2 -weighted imaging does not significantly contribute to breast cancer diagnosis.

Level of evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:864-874.

Keywords: BI-RADS; T2-weighted imaging; breast cancer; diffusion-weighted imaging; dynamic contrast-enhanced MRI.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Breast Neoplasms / diagnostic imaging*
  • Contrast Media / pharmacology*
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Middle Aged
  • Multiparametric Magnetic Resonance Imaging*
  • Observer Variation
  • ROC Curve
  • Reproducibility of Results
  • Retrospective Studies
  • Sensitivity and Specificity

Substances

  • Contrast Media