Absence of β6 Integrin Reduces Influenza Disease Severity in Highly Susceptible Obese Mice

J Virol. 2019 Jan 4;93(2):e01646-18. doi: 10.1128/JVI.01646-18. Print 2019 Jan 15.

Abstract

Obese individuals are considered a high-risk group for developing severe influenza virus infection. While the exact mechanisms for increased disease severity remain under investigation, obese-mouse models suggest that increased acute lung injury (ALI), potentially due to enhanced viral spread and decreased wound repair, is likely involved. We previously demonstrated that upregulation of the lung epithelial cell β6 integrin during influenza virus infection was involved in disease severity. Knocking out β6 (β6 KO) resulted in improved survival. Of interest, obese mice have increased lung β6 integrin levels at homeostasis. Thus, we hypothesized that the protective effect seen in β6 KO mice would extend to the highly susceptible obese-mouse model. In the current study, we show that crossing β6 KO mice with genetically obese (ob/ob) mice (OBKO) resulted in reduced ALI and impaired viral spread, like their lean counterparts. Mechanistically, OBKO alveolar macrophages and epithelial cells had increased type I interferon (IFN) signaling, potentially through upregulated type I IFN receptor expression, which was important for the enhanced protection during infection. Taken together, our results indicate that the absence of an epithelial integrin can beneficially alter the pulmonary microenvironment by increasing protective type I IFN responses even in a highly susceptible obese-mouse model. These studies increase our understanding of influenza virus pathogenesis in high-risk populations and may lead to the development of novel therapies.IMPORTANCE Obesity is a risk factor for developing severe influenza virus infection. However, the reasons for this are unknown. We found that the lungs of obese mice have increased expression of the epithelial integrin β6, a host factor associated with increased disease severity. Knocking out integrin β6 in obese mice favorably altered the pulmonary environment by increasing type I IFN signaling, resulting in decreased viral spread, reduced lung injury, and increased survival. This study furthers our understanding of influenza virus pathogenesis in the high-risk obese population and may potentially lead to the development of novel therapies for influenza virus infection.

Keywords: influenza; obesity; type I interferon; β6 integrin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Lung Injury / immunology
  • Acute Lung Injury / virology*
  • Animals
  • Disease Models, Animal
  • Dogs
  • Gene Knockout Techniques
  • HEK293 Cells
  • Humans
  • Influenza A Virus, H1N1 Subtype / immunology
  • Influenza A Virus, H1N1 Subtype / pathogenicity*
  • Integrin beta Chains / genetics*
  • Interferon Type I / metabolism
  • Madin Darby Canine Kidney Cells
  • Mice
  • Mice, Inbred C57BL
  • Obesity / complications*
  • Obesity / genetics
  • Orthomyxoviridae Infections / genetics
  • Orthomyxoviridae Infections / immunology*
  • Receptor, Interferon alpha-beta / metabolism
  • Signal Transduction
  • Trauma Severity Indices

Substances

  • Integrin beta Chains
  • Interferon Type I
  • integrin beta6
  • Receptor, Interferon alpha-beta