In this study, we present a concurrent chemo/biocatalytic one pot reaction cascade by combining a metal (Pd/Cu) assisted Liebeskind-Srogl (L-S) coupling with an enantioselective enzymatic reduction for the production of chiral amines and alcohols. The latter transformation was realized by applying enantiocomplementary alcohol dehydrogenases from Lactobacillus kefir (R-selective) and Rhodococcus ruber (S-selective). Compatibility issues were solved by investigating first the L-S-coupling protocol in water at room temperature. Subsequently, we investigated two different biphasic systems and applied a biomimicking approach to separate enzyme-deactivating components. By using a lipophilic membrane in a smart reactor design, we were able to perform concurrent catalytic cascades with overall concentrations up to 100 mM substrate and to produce 1-phenylethylamine and several chiral alcohols in high yields (up to 81% over 2 steps) and enantiomeric purity ((+) and (-)-enantiomers both with 99% ee).