We report the first direct quantification of the structural heterogeneity in metallic glasses using intensity variance and angular correlation analyses of the 4-dimensional (4-D) scanning transmission electron microscopy (STEM) data. We demonstrate that the real-space reconstruction and analyses of the 4-D nanodiffraction data acquired using a pixelated fast STEM detector enables quantitative determination of the details of local structural heterogeneity, including the type, size, volume fraction and spatial distribution of local ordering at the nano- to meso-scale, beyond the limits of the previous measurements using conventional detectors. We show that different types of local ordering are present in Zr55Co25Al20 glass, leading to a high degree of structural heterogeneity, with the total volume of locally ordered regions making up to ∼14% of the entire volume. These findings are significant, as the structure-property relationship in metallic glasses and other amorphous materials has been difficult to establish because of the lack of detailed structural information from experiments.
Copyright © 2018 Elsevier B.V. All rights reserved.